
RELATIVITY AND COSMOLOGY I
Solutions to Problem Set 1 Fall 2023

1. The Scales of the Universe

(a) The Planck length, time and mass are

`P =
√
~GN

c3 , tP =
√
~GN

c5 , MP =
√

~c

GN

. (1)

in SI units, they are

lP = 1.62 × 10−35m , tP = 5.39 × 10−44s , MP = 2.18 × 10−8kg . (2)

While the Planck length and time are way smaller than any intervals of length
and time we are able to measure, the Planck mass is well within the scales of the
Universe which we experience in our everyday life. This is a first hint of the weakness
of gravity, which we will discuss more in the rest of this exercise.

(b) To find the relation between SI units and natural units, we first compute Newton’s
gravitational constant in GeV . Since we found that in natural units MP = 1√

GN
,

and mass has units of energy when c = 1, we expect GN to have units of E−2. We
notice that we can write

GN ≈ 6.67 × 10−11
(

kg m2

s2

)−2 m7 kg
s6 (3)

where we isolated in the brackets the units of energy in SI units. Now we use ~ and
c to construct the units outside of the brackets and we convert the units inside the
brackets to GeV by using

1kg m2

s2 = 6.24 × 109GeV . (4)

We obtain
GN ≈ 6.71 × 10−39GeV−2~c7 . (5)

Notice that this is still true in SI units, if we consider ~ and c dimensionful. When
we go to natural units, we obtain

GN ≈ 6.71 × 10−39GeV−2 . (6)

Now to find what is the equivalence between SI units and natural units, we can
simply look at the expressions for the Planck length, time and mass in SI units and
compare with our value of GN in natural units

lP =
√

GN −→ 1m ≈ 5.06 × 1015GeV−1 ,

tP =
√

GN −→ 1s ≈ 1.52 × 1024GeV−1 ,

MP = 1√
GN

−→ 1kg ≈ 5.60 × 1026GeV .

(7)
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Alternative solution :
We can write

1m = 1
(

kg m2

s2

)−1 kg m3

s2 = 1
6.24 × 109GeV

~
1.05 × 10−34

c

3 × 108 ≈ 5.06 × 1015GeV−1

1s = 1
(

kg m2

s2

)−1 kg m2

s
= 1

6.24 × 109GeV
~

1.05 × 10−34 ≈ 1.52 × 1024GeV−1

1kg = 1
(

kg m2

s2

)
s2

m2 = 6.24 × 109GeV(3 × 108)2

c2 ≈ 5.6 × 1026GeV

(8)

(c) • Atoms

To estimate the size of an atom, let us start by writing its energy in natural
units

E ∼ p2

2me

− α

r
. (9)

In this unit system, the de Broglie wavelength of the electron is λ ∼ 1
p
. More-

over, to fit in an orbit of radius r, we need λ = 2πr
n

for some integer n. Con-
sidering the ground state, and neglecting factors of 2 and π, we thus get that
p ∼ 1

r
. Substituting this in our expression for the energy, we have

E ∼ 1
2mer2 − α

r
. (10)

Bound states sit at a minimum of the energy. This lets us estimate the size of
the orbit of the electron, or in other words the size of an atom:

1
2mer3

A

∼ α

r2
A

−→ rA ∼ 1
2αme

∼ 5 GeV−1 ∼ 1 Å , (11)

which is twice the Bohr radius of a Hydrogen atom. For a neutral atom with
Z protons we would in first approximation get

rA ∼ 1
2Zαme

, (12)

where we used that the energy becomes approximately E ∼ Z
2mer2 − αZ2

r
. The

binding energy, instead, is the energy required to strip the electron off of
the atom (in other words, to counteract the attraction of the potential)

Eb = α

rA

∼ 2α2me ∼ 10 eV . (13)

More in general,

Eb = Z2α

rA

∼ 2(Zα)2me ∼ 2Z2 · 10 eV . (14)

• Solids
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We can first estimate the number density n of atoms in a solid by considering
the fact that one atom occupies a volume of roughly ∼ r3

A . That means

nsolids ∼ 1
V

∼ 1
r3

A

∼ (2αme)3 ∼ 102 keV3 . (15)

Consider that 1 keV is exactly the energy scale of X-rays. That is why X-
rays can pass through certain materials (but not all: here the atomic number
becomes important again). The mass density will be given by

ρsolids ∼ mp(2αme)3 ∼ 108 keV4 . (16)

For a generic element, we would have

ρsolids ∼ 2Zmp(2Zαme)3 ∼ (2Z)4αm3
emp , (17)

where we are using that the atomic mass A = Z + nneutrons ∼ 2Z. This
matches the order of magnitude for light elements like sodium (with atomic
number Z = 11) which have density of roughly 10 × 103 kg/m3, and heavy
metals (A ≈ 200) have masses of order 10 × 104 kg/m3. Pressure in solids is
expressed through quantities like Young’s modulus or the bulk modulus. Both
are quantities that describe the way in which a change in energy is related to
a change in volume.

P ∼ E

V
. (18)

A solid will break if

Psolids ≥ Eb

VA

∼ 24α2me(2αme)3 ∼ 10−23 GeV4 . (19)

Including the atomic number,

Psolids ∼ 24 Eb

VA

∼ (Zα)2me(Zαme)3 . (20)

These give estimates for the upper bound on what the pressure in a solid can
be. You can check that this matches the order of magnitude for known values of
the bulk modulus in a variety of materials. For example, in iron P ∼ 1011 Pa .
The speed of sound in a solid is given by

vs =
√

P

ρsolids
∼ α

√
Zme

mp

. (21)

• Planets

Planets are made from solids (roughly), and they hold their shape against
gravity because of their internal pressure, which counterbalances the pressure
created by their weight. We will estimate their size using this fact.

Psolids ∼ Pgravitational (22)

We compute the gravitational pressure from Newton’s law

Pgravitational ∼ Eg

V
∼ GNM2

R

1
R3 ∼ GNρ2

solidsR
2 ∼

28Z8m2
p(αme)6

M2
P

R2 , (23)
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where we used the fact that GN = M−2
P in natural units, and we emphasize

that MP is Planck’s mass while mp is the mass of a proton. Now, (22) becomes

24Z5α5m4
e ∼

Z8m2
p(αme)6

M2
P

R2 −→ Rplanet ∼ MP

4mpmeZ
3
2
√

α
, (24)

The most common element on Earth is iron. That makes our estimate of its
size

REarth ∼ 105 m , (25)
quite close to the correct value. Notice that our estimate for the radius of a
planet can be rewritten as

Rplanet

rA

∼
√

α

GNm2
p

. (26)

This form of this estimation manifests the fact that planets are very big with
respect to atoms because, between two protons, the electromagnetic repulsion
is much stronger than the gravitational attraction. We can derive the mass
by multiplying with the density of a solid

Mplanet = ρsolidsR
3
planet ∼ α

3
2 M3

P

4m2
p

√
Z

(27)

You can check that these estimates for radius and mass reproduce the orders
of magnitude of rocky planets (∼ 1025 kg) and gaseous planets (∼ 1026 kg) by
plugging in different values of Z .

• Neutron stars

As the name suggests, neutron stars are essentially enormous nuclei made of
neutrons. Their density is thus simply m4

p and so is their pressure, since the
binding energy of a proton is most of what makes its rest mass. To estimate
their size, we use again the equilibrium between the pressures

Pn.s. ∼ Pgrav −→ GNρ2
n.s.R

2
n.s. ∼ m4

p −→ Rn.s. ∼ MP

m2
p

∼ 1019 GeV ∼ 104 m ,

(28)
which is incredibly small. You can check that their mass is instead of the
same order of magnitude as the mass of the sun.

Mn.s. ∼ M3
P

m2
p

∼ 1057 GeV ∼ 1030 kg . (29)

• Living beings

In order to estimate the size of a living being, we need to impose that the
molecular bonds along a certain cross sectional area are not broken by, for
example, falling on the ground. That means we need to compare the cross
sectional binding energy in a living being to the gravitational potential energy
it experiences on the planet(

Manimal

mp

) 2
3

Eb ∼ ManimalLanimalg , (30)

4



where
(

Manimal
mp

) 2
3 counts the number of atoms along a certain cross section

of the (approximately spherically symmetric) animal. Animals are in first
approximation uniform solids, Manimal ∼ ρsolidsL

3
animal . Moreover, we can use

the binding energy we derived before. We obtain
(

ρsolidsL
3
animal

mp

) 2
3

Eb ∼ ρsolidsL
4
animal

GMplanet

R2
planet

Lanimal ∼
√

MP

mp

1
me

Z
1
3
animal

Z
5/4
planet

1
α3/4 .

(31)

Depending on the values we choose for Zplanet andZanimal, we get

Lanimal ∼ 10 mm to 1 m . (32)

The estimated mass, instead, is

Manimal ∼ ρsolidsL
3
animal ∼ MP

√
MP

mp

α3/4 Z5
animal

Z
15/4
planet

(33)

which gives a range of

Manimal ∼ 10−1 kg to 10 kg (34)

Notice also that the mass of the animal is the geometric mean between a planet
and a proton:

M2
animal ∼ Mplanetmp ∼ M3

P

mp

α3/2 (35)
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2. Index Gymnastics part 1

(a)

Equation Dummy Free # of Equations Alternative Form
AαBα = 5 α 1 AγBγ = 5

Aµ = Λµ
νAν ν µ 4 Aγ = Λγ

βAβ

T αµλAµC γ
λ = Dαγ µ, λ α, γ 16 T βντ AνC ρ

τ = Dβρ .

(b) δµ
µ is the trace of the identity matrix. In 4 dimensions, δµ

µ = 4 . In n dimensions, δµ
µ =

n . Regarding the Minkowski metric, since it is defined as ηµν = diag(−1, 1, 1, 1) ,
we need to raise one of the indices with the inverse Minkowski metric, which is also
ηµν = diag(−1, 1, 1, 1)

ηµ
ν = ηµαηαν = δµ

ν , (36)

where we used matrix multiplication on the last equality. So, we showed that

ηµ
µ = δµ

µ . (37)

(c) • The symmetrization can happen between indices of two different tensors that
are being multiplied with each other.

Aτ(αBτ
β) = 1

2
(
AταBτ

β + AτβBτ
α

)
. (38)

• When more than two indices are involved in a symmetrization, it is useful to
iterate the process:

A(µBν
τσ) = 1

3
(
AµBν

(τσ) + Aτ Bν
(µσ) + AσBν

(µτ)

)
(39)

= 1
3!
(
AµBν

τσ + AµBν
στ + Aτ Bν

µσ + Aτ Bν
σµ + AσBν

µτ + AσBν
τµ

)
.

You can check that the result is symmetric under the exchange of any two of
the three lower indices.

• To construct all the permutations of an antisymmetrizatized tensor with the
correct signs, one needs to consider that any two terms that differ by the
permutation of one single pair of indices, should have opposite signs.

A[µτσ] = 1
3! (Aµτσ − Aµστ − Aτµσ − Aστµ + Aσµτ + Aτσµ) (40)

• One can have symmetrization over some indices and antisymmetrization over
other indices:

A
[ν

(µ B
σ]

τ) = 1
2
(
A [ν

µ Bσ]
τ + A [ν

τ Bσ]
µ

)
= 1

4
(
A ν

µ Bσ
τ − A σ

µ Bν
τ + A ν

τ Bσ
µ − A σ

τ Bν
µ

) (41)
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3. Canonical Form of Time-, Space-, and Light-like Four-vectors

Since the spatial coordinates of a vector can be reoriented via a rotation, every vector of
the form

V =


V 0

V 1

V 2

V 3

 (42)

can be put into

V ′ = RV =


V 0

|V |
0
0

 (43)

where |V |2 = (V 1)2 + (V 2)2 + (V 3)2, and R is the rotation matrix acting on the spatial
components. The norm is ηµνV µV ν = −(V 0)2 + |V |2

(a) Applying a boost of rapidity η gives

V ′′ = ΛV ′ =


cosh η − sinh η 0 0

− sinh η cosh η 0 0
0 0 1 0
0 0 0 1




V 0

|V |
0
0

 =


V 0 cosh η − |V | sinh η

−V 0 sinh η + |V | cosh η
0
0


(44)

To have (V ′′)1 = 0 as required by the exercise, the rapidity must obey the equation

tanh η = |V |
V 0 . (45)

Since for real arguments tanh takes values between −1 and +1, this is only possible
if (V 0)2 > |V |2, which is equivalent to the requirement that the four-vector V is
time-like:

ηµνV µV ν < 0. (46)

The temporal component then satisfies

(V ′′)0 = V 0 cosh
(

tanh−1 |V |
V 0

)
− |V | sinh

(
tanh−1 |V |

V 0

)
. (47)

Using the hyperbolic identities suggested in the exercise, we get

(V ′′)0 = V 0√
1 − |V |2

(V0)2

−
|V | · |V |

(V0)√
1 − |V |2

(V0)2

=
√

(V 0)2 − |V 2| =
√

−ηµνV µV ν (48)

which concludes the proof.

(b) For a space-like vector, the procedure is similar. To have (V ′′)0 = 0, we need

tanh η = v0

|v|
. (49)
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On the other hand,

(V ′′)1 =
−V 0 · V 0

|V |√
1 − (V 0)2

|V |2

+ |V |√
1 − (V 0)2

|V |2

=
√

−(V 0)2 + |V 2| =
√

ηµνV µV ν , (50)

as we were asked to prove.

(c) The derivation for the light-like vector involves only applying the rotation matrix.
The norm −(V 0)2 + |V |2 = 0 implies (V ′)0 = (V ′)1 = V 0, which is the desired form.

4. A Primer in Variational Calculus

(a) We want to compute the functional derivatives of the following:

F1[f ] =
∫

f(x)dx , F2[f ] =
∫

(f(x))pφ(x)dx ,

F3[f ] =
∫

g[f(x)]dx , F4[x] =
∫ (

dx

dt

)2

dt ,
(51)

using the definition

δF

δf(x0)
= lim

ε→0

F [f(x) + εδ(x − x0)] − F [f(x)]
ε

. (52)

Then we have

δF1[f ]
δf(x0)

= lim
ε→0

1
ε

∫
(f(x) + εδ(x − x0) − f(x)) dx = 1 , (53)

δF2[f ]
δf(x0)

= lim
ε→0

1
ε

∫
[(f(x) + εδ(x − x0))p − (f(x))p] φ(x)dx = p[f(x0)]p−1φ(x0) ,

(54)
δF3[f ]
δf(x0)

= lim
ε→0

1
ε

∫
[g (f(x) + εδ(x − x0)) − g(f(x))] dx = g′(f(x0)) , (55)

δF4[x]
δx(t0)

= lim
ε→0

1
ε

∫ ( d
dt

(x(t) + εδ(t − t0))
)2

−
(

dx

dt

)2
 dt

= 2
∫ d

dt
x(t) d

dt
δ(t − t0)dt (56)

Integrating by parts the last line,

δF4[x]
δx(t0)

= −2d2x

dt2 . (57)

(b) We now move to functionals with vector fields

F1[Aν ] =
∫

AµAµdx , F2[Aν ] =
∫

FµνF µνd4x, (58)
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where the functional derivative is defined as

δF

δfµ(x0)
= lim

ε→0

F [f ν(x) + εδν
µδ(x − x0)] − F [f ν(x)]

ε
, (59)

We therefore have

δF1[Aν ]
δAρ(x0)

= lim
ε→0

1
ε

∫
dx
[
ηµν(Aν(x) + εδν

ρδ(x − x0))(Aµ(x) + εδµ
ρ δ(x − x0))

− ηµνAµ(x)Aν(x)
]

= ηµρAµ(x0) + ηρνAν(x0) = 2Aρ(x0),

(60)

Notice that the usual intuition from calculus is correct: we are deriving a square,
so we expect the exponent to decrease by one and to drop in front. It is usually
the case that intuition is enough to go through functional derivatives, but it is still
important to here show all the rigorous steps in between, at least for once.

δF2[Aν ]
δAρ(x0)

= lim
ε→0

1
ε

∫
d4x

[
ηµαηνβ

× (∂αAβ(x) − ∂βAα(x) + εδβ
ρ ∂αδ(4)(x − x0) − εδα

ρ ∂βδ(4)(x − x0))
× (∂µAν(x) − ∂νAµ(x) + εδν

ρ∂µδ(4)(x − x0) − εδµ
ρ ∂νδ(4)(x − x0))

− ηµαηνβ(∂αAβ(x) − ∂βAα(x))(∂µAν(x) − ∂νAµ(x))
]

= −ηµαηνβ(δβ
ρ ∂α − δα

ρ ∂β)(∂µAν(x) − ∂νAµ(x))
− ηµαηνβ(δν

ρ∂µ − δµ
ρ ∂ν)(∂αAβ(x) − ∂βAα(x))

= −∂µF µ
ρ + ∂νF µ

ρ − ∂αF α
ρ + ∂βF β

ρ = −4∂µF µ
ρ .

(61)

Once you got nightmares after understanding the details of this computation you
can convince yourself that you can do it much faster using the physicist way

δF2 =
∫

d4x2F µνδFµν = 2
∫

d4xF µν(∂µδAν − ∂νδAµ)

= −2
∫

d4x(∂µF µνδAν − ∂νF µνδAµ) = −4
∫

d4x∂µF µνδAν

=⇒ δF2

δAν

= −4∂µF µν .

(62)

(c)
δF [gαβ]
δgµν(x0)

= lim
ε→0

F [gαβ(x) + δα
µδβ

ν δ(x − x0)] − F [gαβ(x)]
ε

, (63)
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