RELATIVITY AND COSMOLOGY 1

Solutions to Problem Set 1 Fall 2023

1. The Scales of the Universe

(a)

The Planck length, time and mass are

. 'hGN . /hGN . /hC
EP - CS ) tP — C5 ) MP — GiN . (1)

in SI units, they are

lp =1.62 x 107%°m, tp =5.39 x 10~ s, Mp=218 x 107%kg.  (2)

While the Planck length and time are way smaller than any intervals of length
and time we are able to measure, the Planck mass is well within the scales of the
Universe which we experience in our everyday life. This is a first hint of the weakness
of gravity, which we will discuss more in the rest of this exercise.

To find the relation between SI units and natural units, we first compute Newton’s
gravitational constant in Gel/. Since we found that in natural units Mp = ﬁ,
and mass has units of energy when ¢ = 1, we expect Gy to have units of E~2. We

notice that we can write

kg m?) 7 m7 k
GNz6.67><10“<g2m> . (3)
S S
where we isolated in the brackets the units of energy in SI units. Now we use h and
¢ to construct the units outside of the brackets and we convert the units inside the

brackets to GeV by using

2
k8 = 6.24 x 10°GeV . (4)
S
We obtain
Gy = 6.71 x 107GeV 2R’ (5)

Notice that this is still true in SI units, if we consider A and ¢ dimensionful. When
we go to natural units, we obtain

Gy~ 6.71 x 1072°GeV 2. (6)

Now to find what is the equivalence between SI units and natural units, we can
simply look at the expressions for the Planck length, time and mass in SI units and
compare with our value of Gy in natural units

lp=1/Gn — lm ~ 5.06 x 10"°GeV ™",
tp =1/Gn — 1s = 1.52 x 10%GeV ™!, (7)

1
Mp = e — 1kg ~ 5.60 x 10%GeV .



Alternative solution :
We can write

kg m?\ ' kg m? 1 h
1m:1(gm> em _ € A~ 5.06x 105GeV

s2 s2 6.24 x 10°GeV 1.05 x 10343 x 108
kg m?) ' kg m? 1 h M <1
Is = 1 - ~ 152 x 10%GeV
i ( 2 ) S 624 x 10°GeV 1.05 x 10— e
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(8)

(¢) « Atoms

To estimate the size of an atom, let us start by writing its energy in natural
units

P «
E~ - —. 9
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In this unit system, the de Broglie wavelength of the electron is A ~ zlf More-

over, to fit in an orbit of radius r, we need A\ = 2% for some integer n. Con-
sidering the ground state, and neglecting factors of 2 and 7, we thus get that
P~ % . Substituting this in our expression for the energy, we have

I o (10)
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Bound states sit at a minimum of the energy. This lets us estimate the size of
the orbit of the electron, or in other words the size of an atom:
1 «
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~5GeV ~ 1A, (11)

which is twice the Bohr radius of a Hydrogen atom. For a neutral atom with
Z protons we would in first approximation get

1
2Zam,’

[V ad (12)

where we used that the energy becomes approximately £ ~ ﬁ — aTz2 . The

binding energy, instead, is the energy required to strip the electron off of
the atom (in other words, to counteract the attraction of the potential)

By =% ~20%m, ~ 10 éV. (13)
A
More in general,
Z2
By =22~ 2(Za)m, ~ 272 - 106V (14)
TA

e Solids



We can first estimate the number density n of atoms in a solid by considering
the fact that one atom occupies a volume of roughly ~ 73 . That means

1 1
Nsolids ™~ V ~ 3

~ (2am,)? ~ 10%keV? . (15)
T'A

Consider that 1 keV is exactly the energy scale of X-rays. That is why X-
rays can pass through certain materials (but not all: here the atomic number
becomes important again). The mass density will be given by

Potids ~ Myp(2am,)* ~ 10° keV* . (16)
For a generic element, we would have
Psolids ~ 2Zm,(2Zam,.)? ~ (2Z)*am3m, (17)

where we are using that the atomic mass A = Z + Nueutrons ~ 24. This
matches the order of magnitude for light elements like sodium (with atomic
number Z = 11) which have density of roughly 10 x 103kg/m?, and heavy
metals (A ~ 200) have masses of order 10 x 10 kg/m?. Pressure in solids is
expressed through quantities like Young’s modulus or the bulk modulus. Both
are quantities that describe the way in which a change in energy is related to
a change in volume.

E
P~_—. 18
= (18)
A solid will break if
E
Piolias > vb ~ 2*a’m.(2am,)? ~ 1072 GeV*. (19)
A
Including the atomic number,
4 B 2 3
Psolids ~ 2 v ~ (ZOC) me(Zame) . (20)
A

These give estimates for the upper bound on what the pressure in a solid can
be. You can check that this matches the order of magnitude for known values of
the bulk modulus in a variety of materials. For example, in iron P ~ 10! Pa.
The speed of sound in a solid is given by

P Zme
Psolids my

Planets

Planets are made from solids (roughly), and they hold their shape against
gravity because of their internal pressure, which counterbalances the pressure
created by their weight. We will estimate their size using this fact.

Piotias ~ Pgravitational (22)
We compute the gravitational pressure from Newton’s law
287%m2(am.)°

b E, GnM? 1
Mp

gravitational ™ 7 R R3 R2 , (23)
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where we used the fact that G = Mp? in natural units, and we emphasize
that Mp is Planck’s mass while m,, is the mass of a proton. Now, (22) becomes

Z%m2(am.)° Mp

475 5 4 2
2°Z2°a’°m; ~ 5 R® — Rplanet ¥ ————35——
Mp dm,m.Z2\/a

: (24)
The most common element on Earth is iron. That makes our estimate of its
size

REarth ~ 105 m, (25>

quite close to the correct value. Notice that our estimate for the radius of a

planet can be rewritten as
Rojan [«
planet ~ . (26)
A G Nmp

This form of this estimation manifests the fact that planets are very big with
respect to atoms because, between two protons, the electromagnetic repulsion
is much stronger than the gravitational attraction. We can derive the mass
by multiplying with the density of a solid

3
a2 M3
Mane = soisR3 net ™ P 27
planet Psolid planet 4777%\/7 ( )
You can check that these estimates for radius and mass reproduce the orders
of magnitude of rocky planets (~ 10% kg) and gaseous planets (~ 102 kg) by
plugging in different values of 7 .

Neutron stars

As the name suggests, neutron stars are essentially enormous nuclei made of
neutrons. Their density is thus simply m;ﬁ and so is their pressure, since the
binding energy of a proton is most of what makes its rest mass. To estimate
their size, we use again the equilibrium between the pressures

M
Pos. ~ Pyay — Gnp2 B2, ~mb — Rys ~ —5 ~ 10" GeV ~ 10*m,
m

p
(28)
which is incredibly small. You can check that their mass is instead of the
same order of magnitude as the mass of the sun.

M3
My, ~ —2 ~ 10”7 GeV ~ 10* kg . (29)
my
Living beings

In order to estimate the size of a living being, we need to impose that the
molecular bonds along a certain cross sectional area are not broken by, for
example, falling on the ground. That means we need to compare the cross
sectional binding energy in a living being to the gravitational potential energy
it experiences on the planet

( M, animal

2
3
> Eb ~ ManimalLanimalga (30)
mp
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2
where (%)3 counts the number of atoms along a certain cross section
P

of the (approximately spherically symmetric) animal. Animals are in first

approximation uniform solids, Mnimar ~ pSOlidSLinimal'
the binding energy we derived before. We obtain

wIin

3
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Depending on the values we choose for Zpjanet andZanimar, we get
Lonimal ~ 10mm to 1m.

The estimated mass, instead, is

M 75
3 P 3/4 “animal
Mnimal ~ psolidsLanimal ~ Mp o / 15/4
mp 7 1
planet

which gives a range of

Manimal ~ 107 kg to 10kg

MOI"GOVGI‘, Wwe caln use

(31)

(32)

(33)

(34)

Notice also that the mass of the animal is the geometric mean between a planet

and a proton:
M2 M Mg 3/2

animal planet7Tlp ™~ «Q
myp

(35)



2. Index Gymnastics part 1

H Equation Dummy Free # of Equations Alternative Form H
(a) AuBY =5 o 1 AB"=5
A = AF AV v 1 4 AT = A“’BAB
T A,C =D A,y 16 T7A,C P = D"

(b) 0% is the trace of the identity matrix. In 4 dimensions, 6/, = 4. In n dimensions, ¢}, =
n. Regarding the Minkowski metric, since it is defined as 7, = diag(—1,1,1,1),

Y Y Y

we need to raise one of the indices with the inverse Minkowski metric, which is also
n* = diag(—1,1,1,1)
' = 1"y = 0}, (36)

where we used matrix multiplication on the last equality. So, we showed that
n', =0, . (37)

o

(¢) o The symmetrization can happen between indices of two different tensors that
are being multiplied with each other.

T 1 T T
Ar@BTg) = 5 (AraB7 + ArsBT,) (38)

e When more than two indices are involved in a symmetrization, it is useful to
iterate the process:

v 1 v y ,
A(ILB o) — g (AuB ) + A, B ) + A.B (/“_)) (39)
]. v v v v v v
= 5 (AMB TO + A/LB oT + ATB o + ATB ou + AO-B T + AO-B TN) .

You can check that the result is symmetric under the exchange of any two of
the three lower indices.

e To construct all the permutations of an antisymmetrizatized tensor with the
correct signs, one needs to consider that any two terms that differ by the
permutation of one single pair of indices, should have opposite signs.

1
A[,u*ra] = 5 (A,uTU - AMU‘T - AT;w' - AUTM + Ao’,uT + A‘rcru) (40)

e One can have symmetrization over some indices and antisymmetrization over
other indices:

1
AVBT . = (AlB 4 A VB
( T) T T
I ( 1 u) (1)

e Bl

(AyB°, — ASB. + AYB%, — A’B",)



3. Canonical Form of Time-, Space-, and Light-like Four-vectors

Since the spatial coordinates of a vector can be reoriented via a rotation, every vector of
the form

VO
Vl
V3
can be put into
VO
V' — RV — |g| (43)
0

where [V]? = (V)2 + (V?)2 + (V3)?, and R is the rotation matrix acting on the spatial
components. The norm is 7, V*V" = —(V°)? + |V |?

(a) Applying a boost of rapidity n gives

coshn —sinhnp 0 0\ /V° V0coshn — |V|sinhn
v i | —sinhnp coshnp 0 Of||V]| [—=V"sinhn+|V|coshn
Vi=AVi= 0 0 10 0o 0
0 0 01 0 0
(44)

To have (V”)! = 0 as required by the exercise, the rapidity must obey the equation

V]
tanhn = Vo - (45)
Since for real arguments tanh takes values between —1 and +1, this is only possible
if (V9?2 > |V]?, which is equivalent to the requirement that the four-vector V is

time-like:
N VHVY < 0. (46)
The temporal component then satisfies
V V
(V")? = V?cosh (’canh_1 ’VO|> — |V| sinh (temh_1 |V0‘> . (47)

Using the hyperbolic identities suggested in the exercise, we get

Vo V- 4%
V") = e = = O VA = P
 (W)? - ()2

which concludes the proof.

(b) For a space-like vector, the procedure is similar. To have (V”)° = 0, we need

L0
tanhn = o (49)
v



On the other hand,

0o VO
V' m Vi

==V + V2 = g Vive o (50)

as we were asked to prove.

(¢) The derivation for the light-like vector involves only applying the rotation matrix.
The norm —(V?)2+4 [V]2 = 0 implies (V')? = (V')! = V° which is the desired form.

4. A Primer in Variational Calculus

(a) We want to compute the functional derivatives of the following:

Rlfl = [ f@de, Bl = [(f@)re@)ds,

2 51)
Fif = [alflar. Rl = [ () ar
using the definition
SF_ | FIf() + ez — )] — FIf(2)
TICOR e )
Then we have
5F1[f]— im1 )+ ed(x —xg) — flz))dx =
S =lm = [ (F(@) + (e~ a0) - f)) dr =1, (53)
SEa[f] .

(54)
Sl —tim - [ la (7o) + dla — an) = 9((a))] o = o (), (55)

g ?t[f)] _ lgoli (jt(x(t) et —to))>2 _ (jﬁfﬂ dt
= jtx(t)jta(t o)t (56)

Tntegrating by parts the last line,
St~ )
(b) We now move to functionals with vector fields

Fi[A"] = / A ANz, Fy[AY] = / F, Frdis, (58)



where the functional derivative is defined as

OF F[f"(z) + €0, 0(x — o) — F[f"(2)]
SFr(zo) lim . : (59)
We therefore have
gjlp[(j;lg = lg%i dx |1, (A" (z) + €0, 0(x — x0) ) (A" (2) + €656 (x — x0))
- nwA“(x)A”(x)] (60)

= Nup A" (20) + N A (0) = 24,(70),

Notice that the usual intuition from calculus is correct: we are deriving a square,
so we expect the exponent to decrease by one and to drop in front. It is usually
the case that intuition is enough to go through functional derivatives, but it is still
important to here show all the rigorous steps in between, at least for once.

OFp[AY] 1 A

e—0 €
x (0°AP(z) — 0° A%(z) + €600 (x — 2o) — €650°6W (z — 2p))
x (O"AY(x) — " A (z) + €650"5™W (2 — o) — 6106 (x — )
— el (07 A% (2) — 87A(2)) (9" A” () — 0" A*(x))
= ~Muallvp(0,0% — 5507) (9" A” (x) — 9" A*(x))
— Muallos (8,0 — 850”) (0% A% (x) — 07 A% ()
= =0 F" +0,F," — 0, F%, + 0sF," = —40,F",.

(61)

Once you got nightmares after understanding the details of this computation you
can convince yourself that you can do it much faster using the physicist way

SF, — / &2 S F,, = 2 / Ao F™ (9,64, — 9,0A,)

— 2 / A2 (9, "5 A, — 0,F"5A,) = —4 / d20, F"SA,  (62)

oFy »
A = 48MF .
“ p Flg*8 596845 Flg®8
SFI) Pl + s - - Flat)
(SgMV(xO) e—0 €



